0

Hybrid Solar Cells From MDMO-PPV and Silicon Nanocrystals

Chin-Yi Liu, Uwe R Kortshagen

Nanoscale. 2012 Jul 7;4(13):3963-8.

PMID: 22660893

Abstract:

Solution-processed bulk heterojunction solar cells from silicon nanocrystals (Si NCs) and poly(3-hexylthiophene) (P3HT) have shown promising power conversion efficiencies. Here we report on an attempt to enhance the performance of Si NC-polymer hybrid solar cells by using poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as a hole conductor, which is expected to yield a higher open circuit voltage than P3HT due to its lower highest occupied molecular orbital (HOMO). Bulk heterojunction solar cells consisting of 3-5 nm silicon nanocrystals (Si NCs) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) have been fabricated. The properties of the hybrid Si NC/MDMO-PPV devices were studied as a function of the Si NC/MDMO-PPV weight ratio. Cells of 58 wt% 3-5 nm Si NCs showed the best overall performance under simulated one-sun AM 1.5 global illumination (100 mW cm(-2)). Compared to composite films of Si NCs and poly(3-hexylthiophene), we indeed observed an improved open circuit voltage but a lower power conversion efficiency from the Si NC/MDMO-PPV devices. The lower efficiency of Si NC/MDMO-PPV is correlated to the lower hole mobility and narrower absorption spectrum of MDMO-PPV compared to P3HT.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP177716595 MDMO-PPV MDMO-PPV 177716-59-5 Price
qrcode