Computational Modeling-Based Discovery of Novel Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-like Protein 2

Pinyi Lu, Raquel Hontecillas, William T Horne, Adria Carbo, Monica Viladomiu, Mireia Pedragosa, David R Bevan, Stephanie N Lewis, Josep Bassaganya-Riera

PLoS One. 2012;7(4):e34643.

PMID: 22509338

Abstract:

Background:




Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects.













Methodology/principal findings:




The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses.













Conclusions/significance:




LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP500538943 NSC61610 NSC61610 500538-94-3 Price
qrcode
Privacy Policy | Cookie Policy | Copyright © 2024 Alfa Chemistry. All rights reserved.