TRPM7 Regulates Proliferation and Polarisation of Macrophages

Tom Schilling, Francesc Miralles, Claudia Eder

J Cell Sci. 2014 Nov 1;127(Pt 21):4561-6.

PMID: 25205764

Abstract:

Ion channels play pivotal roles in regulating important functions of macrophages, such as cytokine and chemokine production, migration, proliferation, phagocytosis and others. In this study, we have identified the transient receptor potential cation channel, subfamily M, member 7 (TRPM7) for the first time in macrophages. TRPM7 activity is differentially regulated in macrophages, i.e. current density in TRPM7 is significantly larger in anti-inflammatory M2-type macrophages than in untreated and in pro-inflammatory M1-type macrophages, whereas mRNA levels of TRPM7 remain unchanged upon cell polarisation. The specific TRPM7 inhibitors NS8593 and FTY720 abolish proliferation of macrophages induced by interleukin-4 (IL-4) and macrophage colony-stimulating factor (M-CSF), respectively, whereas proliferation arrest was not accompanied by induction of apoptosis or necrosis in macrophages. Furthermore, NS8593 and FTY720 prevented polarisation of macrophages towards the anti-inflammatory M2 phenotype. Inhibition of TRPM7 reduced IL-4-induced upregulation of arginase-1 (Arg1) mRNA levels and Arg1 activity, and abolished the inhibitory effects of IL-4 or M-CSF on LPS-induced TNF-α production by macrophages. In summary, our data suggest a main role of TRPM7 in the regulation of macrophage proliferation and polarisation.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP875755241 NS8593 hydrochloride NS8593 hydrochloride 875755-24-1 Price
qrcode
Privacy Policy | Cookie Policy | Copyright © 2024 Alfa Chemistry. All rights reserved.