0

(R)-PFI-2 Is a Potent and Selective Inhibitor of SETD7 Methyltransferase Activity in Cells

Dalia Barsyte-Lovejoy, Fengling Li, Menno J Oudhoff, John H Tatlock, Aiping Dong, Hong Zeng, Hong Wu, Spencer A Freeman, Matthieu Schapira, Guillermo A Senisterra, Ekaterina Kuznetsova, Richard Marcellus, etc.

Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12853-8.

PMID: 25136132

Abstract:

SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2-a first-in-class, potent (Ki (app) = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7-and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP1627607888 (S)-PFI-2 (S)-PFI-2 1627607-88-8 Price
qrcode