0

A Bifunctional Electrolyte Additive for High-Voltage LiNi

Tae Jin Lee, Jiyong Soon, Seulki Chae, Ji Heon Ryu, Seung M Oh

ACS Appl Mater Interfaces. 2019 Mar 27;11(12):11306-11316.

PMID: 30830735

Abstract:

4-(Trimethylsiloxy)-3-pentene-2-one (TMSPO) is tested as an electrolyte additive to enhance Coulombic efficiency and cycle retention for the Li/LiNi0.5Mn1.5O4 (LNMO) half-cell and graphite/LNMO full-cell. TMSPO carries two functional groups, siloxane (-Si-O-) and carbon-carbon (C═C) double bonds. It is found that the siloxane group reacts with hydrogen fluoride (HF), which is generated by hydrolysis of lithium hexafluorophosphate (LiPF6) by impure water in the electrolyte solution, to produce 4-hydroxypent-3-ene-2-one (HPO). The as-generated HPO, as well as TMSPO itself, is electrochemically oxidized to form a protective surface film on the LNMO electrode, in which it is inferred that the carbon-carbon (C═C) double bond initiates radical polymerization. The surface film derived from the TMSPO-added electrolyte shows a superior passivating ability to that generated from the pristine (TMSPO-free) electrolyte. The suppression of electrolyte oxidation enabled by the superior passivating ability offers two beneficial features to the half-cells and full-cells: the suppression of both HF generation and deposition of the resistive surface film on LNMO. As a result, the metal dissolution by HF attack on LNMO appears to be smaller by the addition of TMSPO. The cell polarization is also less significant because of the latter beneficial feature. In short, the bifunctional activity of TMSPO (HF scavenger and protective film former) allows an enhanced Coulombic efficiency and cycle retention to the half-cell and full-cell.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
LS72210 Lithium hexafluorophosphate solution Lithium hexafluorophosphate solution Price
qrcode