0

A Study on Modification of Nanoporous Rice Husk Silica for Hydrophobic Nano Filter

Hee Jin Kim, Soo Jeong So, Chong Soo Han

J Nanosci Nanotechnol. 2010 May;10(5):3705-8.

PMID: 20359032

Abstract:

Nanoporous rice husk silica (RHS) was modified with alkylsilylation reagents, hexamethyldisilazane, diethoxydiphenylsilane, dichlorodimethylsilane and n-octodecyltrimethoxysilane. The silica samples were characterized with Raman spectrometer, thermal gravimetric analyzer, scanning electron microscope, nitrogen adsorption measurement and solid state nuclear magnetic resonance spectrometer. Raman spectra of the modified silica showed growth of the peaks of C-H stretching and CH3 bending at approximateluy 3000 cm(-1) and approximately 1500 cm(-1), respectively. Weight losses of 3 approximately 5% were observed in thermo gravimetric profiles of the modified silica. The microscopic shape of RHS, approximately 20 nm primary particles and their aggregates was almost not changed by the modification but there were colligations of the silica particles in the sample treated with dichlorodimethylsilane or diethoxydiphenylsilane. BET adsorption experiment showed the modification significantly decreased the mean pore size of the silica from approximately 5 nm to approximately 4 nm as well as the pore volume from 0.5 cm3/g to 0.4 cm3/g except the case of treatment with n-octodecyltrimethoxysilane. 29Si Solid NMR Spectra of the silica samples showed that there were decrease in the relative intensities of Q2 and Q3 peaks and large increments in Q4 after the modification except for the case of bulky n-octodecyltrimethoxysilane. From the results, it was concluded that the alkylsilylation reagents reacted with hydroxyl groups on the silica particles as well as in the nano pores while the size of the reagent molecule affected its diffusion and reaction with the hydroxyl groups in the pores.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP2553197 Diethoxydiphenylsilane Diethoxydiphenylsilane 2553-19-7 Price
qrcode