0

Aliphatic Polycarbonates Based on Carbon Dioxide, Furfuryl Glycidyl Ether, and Glycidyl Methyl Ether: Reversible Functionalization and Cross-Linking

Jeannette Hilf, Markus Scharfenberg, Jeffrey Poon, Christian Moers, Holger Frey

Macromol Rapid Commun. 2015 Jan;36(2):174-9.

PMID: 25407342

Abstract:

Well-defined poly((furfuryl glycidyl ether)-co-(glycidyl methyl ether) carbonate) (P((FGE-co-GME)C)) copolymers with varying furfuryl glycidyl ether (FGE) content in the range of 26% to 100% are prepared directly from CO2 and the respective epoxides in a solvent-free synthesis. All materials are characterized by size-exclusion chromatography (SEC), (1)H NMR spectroscopy, and differential scanning calorimetry (DSC). The furfuryl-functional samples exhibit monomodal molecular weight distributions with Mw/Mn in the range of 1.16 to 1.43 and molecular weights (Mn) between 2300 and 4300 g mol(-1). Thermal properties reflect the amorphous structure of the polymers. Both post-functionalization and cross-linking are performed via Diels-Alder chemistry using maleimide derivatives, leading to reversible network formation. This transformation is shown to be thermally reversible at 110 °C.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP13679464 Furfuryl methyl ether Furfuryl methyl ether 13679-46-4 Price
qrcode