0

AMPK, a Metabolic Sensor, Is Involved in Isoeugenol-Induced Glucose Uptake in Muscle Cells

Nami Kim, Jung Ok Lee, Hye Jeong Lee, Yong Woo Lee, Hyung Ip Kim, Su Jin Kim, Sun Hwa Park, Chul Su Lee, Sun Woo Ryoo, Geum-Sook Hwang, Hyeon Soo Kim

J Endocrinol. 2016 Feb;228(2):105-14.

PMID: 26585419

Abstract:

Isoeugenol exerts various beneficial effects on human health. However, the mechanisms underlying these effects are poorly understood. In this study, we observed that isoeugenol activated AMP-activated protein kinase (AMPK) and increased glucose uptake in rat L6 myotubes. Isoeugenol-induced increase in intracellular calcium concentration and glucose uptake was inhibited by STO-609, an inhibitor of calcium/calmodulin-dependent protein kinase kinase (CaMKK). Isoeugenol also increased the phosphorylation of protein kinase C-α (PKCα). Chelation of calcium with BAPTA-AM blocked isoeugenol-induced AMPK phosphorylation and glucose uptake. Isoeugenol stimulated p38MAPK phosphorylation that was inhibited after pretreatment with compound C, an AMPK inhibitor. Isoeugenol also increased glucose transporter type 4 (GLUT4) expression and its translocation to the plasma membrane. GLUT4 translocation was not observed after the inhibition of AMPK and CaMKK. In addition, isoeugenol activated the Akt substrate 160 (AS160) pathway, which is downstream of the p38MAPK pathway. Knockdown of the gene encoding AS160 inhibited isoeugenol-induced glucose uptake. Together, these results indicate that isoeugenol exerts beneficial health effects by activating the AMPK/p38MAPK/AS160 pathways in skeletal muscle.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP97541 Isoeugenol Isoeugenol 97-54-1 Price
qrcode