0

An Effective Way to Optimize the Functionality of Graphene-Based Nanocomposite: Use of the Colloidal Mixture of Graphene and Inorganic Nanosheets

Xiaoyan Jin, Kanyaporn Adpakpang, In Young Kim, Seung Mi Oh, Nam-Suk Lee, Seong-Ju Hwang

Sci Rep. 2015 Jun 8;5:11057.

PMID: 26053331

Abstract:

The best electrode performance of metal oxide-graphene nanocomposite material for lithium secondary batteries can be achieved by using the colloidal mixture of layered CoO2 and graphene nanosheets as a precursor. The intervention of layered CoO2 nanosheets in-between graphene nanosheets is fairly effective in optimizing the pore and composite structures of the Co3O4-graphene nanocomposite and also in enhancing its electrochemical activity via the depression of interaction between graphene nanosheets. The resulting CoO2 nanosheet-incorporated nanocomposites show much greater discharge capacity of ~1750 mAhg(-1) with better cyclability and rate characteristics than does CoO2-free Co3O4-graphene nanocomposite (~1100 mAhg(-1)). The huge discharge capacity of the present nanocomposite is the largest one among the reported data of cobalt oxide-graphene nanocomposite. Such a remarkable enhancement of electrode performance upon the addition of inorganic nanosheet is also observed for Mn3O4-graphene nanocomposite. The improvement of electrode performance upon the incorporation of inorganic nanosheet is attributable to an improved Li(+) ion diffusion, an enhanced mixing between metal oxide and graphene, and the prevention of electrode agglomeration. The present experimental findings underscore an efficient and universal role of the colloidal mixture of graphene and redoxable metal oxide nanosheets as a precursor for improving the electrode functionality of graphene-based nanocomposites.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
LS71751 Mn3O4/graphene nanocomposite Mn3O4/graphene nanocomposite Price
qrcode