0

Atractylenolide-I Protects Human SH-SY5Y Cells From 1-Methyl-4-Phenylpyridinium-Induced Apoptotic Cell Death

Sandeep Vasant More, Dong-Kug Choi

Int J Mol Sci. 2017 May 8;18(5):1012.

PMID: 28481321

Abstract:

Oxidative stress and apoptosis are the major mechanisms that induce dopaminergic cell death. Our study investigates the protective effects of atractylenolide-I (ATR-I) on 1-methyl-4-phenylpyridinium (MPP⁺)-induced cytotoxicity in human dopaminergic SH-SY5Y cells, as well as its underlying mechanism. Our experimental data indicates that ATR-I significantly inhibits the loss of cell viability induced by MPP⁺ in SH-SY5Y cells. To further unravel the mechanism, we examined the effect of ATR-I on MPP⁺-induced apoptotic cell death characterized by an increase in the Bax/Bcl-2 mRNA ratio, the release of cytochrome-c, and the activation of caspase-3 leading to elevated levels of cleaved poly(ADP-ribose) polymerase (PARP) resulting in SH-SY5Y cell death. Our results demonstrated that ATR-I decreases the level of pro-apoptotic proteins induced by MPP⁺ and also restored Bax/Bcl-2 mRNA levels, which are critical for inducing apoptosis. In addition, ATR-I demonstrated a significant increase in the protein expression of heme-oxygenase in MPP⁺-treated SH-SY5Y cells. These results suggest that the pharmacological effect of ATR-I may be, at least in part, caused by the reduction in pro-apoptotic signals and also by induction of anti-oxidant protein.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP73069133 Atractylenolide I Atractylenolide I 73069-13-3 Price
qrcode