0

Barnacle Cement as Surface Anchor for "Clicking" of Antifouling and Antimicrobial Polymer Brushes on Stainless Steel

Wen Jing Yang, Tao Cai, Koon-Gee Neoh, En-Tang Kang, Serena Lay-Ming Teo, Daniel Rittschof

Biomacromolecules. 2013 Jun 10;14(6):2041-51.

PMID: 23641901

Abstract:

Barnacle cement (BC) was utilized 'beneficially' as a surface anchor on stainless steel (SS) for coupling of functional polymer brushes via "click" reactions in both "grafting-to" and "grafting-from" processes. Ethylene sulfide (ES), propargyl carbonylimidazole (PPC) and azidoethyl carbonylimidazole (AEC) reacted with amine and/or hydroxyl groups in BC to introduce the corresponding thiol, alkyne, and azide groups on SS surfaces (SS-thiol, SS-alkyne, and SS-azide, respectively). Antifouling zwitterionic SS-PMPC surface was prepared by thiol-ene photopolymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) from the SS-thiol surface. Protein-resistant SS-PPEGMA and protein-adsorbing SS-PPFS surfaces were prepared by coupling of the respective azide-functionalized poly(poly(ethylene glycol)methyl ether methacrylate) (azido-PPEGMA) and poly(2,3,4,5,6-pentafluorostyrene) (azido-PPFS) polymer brushes in azide-alkyne "click" reaction. Antifouling alkyne-functionalized poly(N-hydroxyethyl acrylamide) (alkynyl-PHEAA) and antibacterial alkyne-functionalized poly(2-(methacryloyloxy)ethyl trimethylammonium chloride) (alkynyl-PMETA) polymer brushes were clicked on the SS-azide surface. Adsorption of bovine serum albumin and bacteria fouling of Gram-negative Escherichia coli ( E. coli ) and Gram-positive Staphylococcus epidermidis ( S. epidermidis ) were investigated on the polymer-functionalized SS surfaces. The versatile bioanchor and functional polymer brush coatings are stable in an abiotic aqueous environment for over a month.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP89485610-A Poly(ethylene glycol) methyl ether azide Poly(ethylene glycol) methyl ether azide 89485-61-0 Price
qrcode