0

Calmodulin Increases Ca-dependent Inhibition of the Na,K-ATPase in Human Red Blood Cells

D R Yingst, J Ye-Hu, H Chen, V Barrett

Arch Biochem Biophys. 1992 May 15;295(1):49-54.

PMID: 1315506

Abstract:

Proteins in human red cell hemolysate were purified to determine which of them increase inhibition of the Na,K-ATPase in the presence of 2 microM free Ca. Samples purified 600,000-fold inhibited the Na,K-ATPase of human red cells in a Ca-dependent manner and stimulated the (Ca+Mg)-ATPase. These samples contained two proteins as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE): calmodulin (18,000 Mr), which comprised most (greater than 90%) of the total protein, and an unidentified protein of approximately 13,000 Mr. Both proteins were a distinctive light yellow when stained with silver. Calmodulin from bovine testes also inhibited the Na,K-ATPase and stimulated the (Ca+Mg)-ATPase. This preparation also contained two proteins as analyzed by SDS-PAGE: calmodulin (95 to 99% of the total protein) and another protein of approximately 13,000 Mr (1 to 5% of the total protein). Both were light yellow when stained with silver. Since the amount of red cell protein was limited, the remainder of the study was carried out with the bovine testes preparation. Heating the testes preparation decreased, but did not abolish, inhibition of the Na,K-ATPase and reduced stimulation of the (Ca+Mg)-ATPase. When corrected for denatured calmodulin, both heated and unheated proteins increased inhibition of the Na,K-ATPase to the same extent. The Na,K-ATPase was inhibited at 2 microM free Ca in a dose-dependent manner over a range of 15 to 100 nM calmodulin. To establish if the inhibition was due to the calmodulin or the 13,000 Mr protein, both were electroeluted after SDS-PAGE. Electroeluted calmodulin stimulated the (Ca+Mg)-ATPase and increased Ca inhibition of the Na,K-ATPase. Electroeluted amounts of the smaller Mr protein slightly stimulated the (Ca+Mg)-ATPase, but had no effect on the Na,K-ATPase. This protein was digested with cyanogen bromide, partially sequenced, and thereby identified as a fragment of calmodulin. We conclude that intact calmodulin increases inhibition of the Na,K-ATPase at 2 microM free Ca. We suggest that calmodulin is part of a mechanism mediating the effects of physiological free Ca on the Na,K-ATPase.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP77107461 Calmodulin from bovine testes Calmodulin from bovine testes 77107-46-1 Price
qrcode