0

Characterization and Neural Differentiation of Mouse Embryonic and Induced Pluripotent Stem Cells on Cadherin-Based Substrata

Amranul Haque, Xiao-Shan Yue, Ali Motazedian, Yoh-ichi Tagawa, Toshihiro Akaike

Biomaterials. 2012 Jul;33(20):5094-106.

PMID: 22520296

Abstract:

A suitable culture condition using advanced biomaterials has the potential to improve stem cell differentiation into selective lineages. In this study, we evaluated the effects of recombinant extracellular matrix (ECM) components on the mouse embryonic stem (mES) and induced pluripotent stem (miPS) cells' self-renewal and differentiation into neural progenitors, comparing conventional culture substrata. The recombinant ECMs were established by immobilizing two chimera proteins of cadherin molecules, E-cadherin-Fc and N-cadherin-Fc, either alone or in combination. We report that the completely homogeneous population of mES and miPS cells could be maintained on E-cadherin-based substrata under feeder- and serum-free culture conditions to initiate neural differentiation. Using defined monolayer differentiation conditions on E-cadherin and N-cadherin (E-/N-cad-Fc) hybrid substratum, we routinely obtained highly homogeneous population of primitive ectoderm and neural progenitor cells. Moreover, the differentiated cells with higher expression of βIII-tubulin, Pax6, and tyrosine hydroxylase (TH) in absence of GFAP (a glial cell marker) expression suggesting the presence of a lineage restricted to neural cells. Our improved culture method should provide a homogeneous microenvironment for differentiation and obviate the need for protocols based on stromal feeders or embryoid bodies.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
IAR4248720 E-Cadherin/Fc Chimera from mouse E-Cadherin/Fc Chimera from mouse Price
qrcode