0

Characterization of an exo-β-1,3-D: -Galactanase From Sphingomonas Sp. 24T and Its Application to Structural Analysis of Larch Wood Arabinogalactan

Tatsuji Sakamoto, Hiromasa Tanaka, Yuichi Nishimura, Megumi Ishimaru, Naoya Kasai

Appl Microbiol Biotechnol. 2011 Jun;90(5):1701-10.

PMID: 21452032

Abstract:

A type II arabinogalactan-degrading enzyme, termed Exo-1,3-Gal, was purified to homogeneity from the culture filtrate of Sphingomonas sp. 24T. It has an apparent molecular mass of 48 kDa by SDS-PAGE. Exo-1,3-Gal was stable from pH 3 to 10 and at temperatures up to 40 °C. The optimum pH and temperature for enzyme activity were pH 6 to 7 and 50 °C, respectively. Galactose was released from β-1,3-D: -galactan and β-1,3-D: -galactooligosaccharides by the action of Exo-1,3-Gal, indicating that the enzyme was an exo-β-1,3-D: -galactanase. Analysis of the reaction products of β-1,3-galactotriose by high-performance anion-exchange chromatography revealed that the enzyme hydrolyzed the substrate in a non-processive mode. Exo-1,3-Gal bypassed the branching points of β-1,3-galactan backbones in larch wood arabinogalactan (LWAG) to produce mainly galactose, β-1,6-galactobiose, and unidentified oligosaccharides 1 and 2 with the molar ratios of 7:19:62:12. Oligosaccharides 1 and 2 were enzymatically determined to be β-1,6-galactotriose and β-1,6-galactotriose substituted with a single arabinofuranose residue, respectively. The ratio of side chains enzymatically released from LWAG was in good agreement with the postulated structure of the polysaccharide previously determined by chemical methods.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP75541832 Exo 1 Exo 1 75541-83-2 Price
qrcode