0

Chlorhexidine Sustained-Release Varnishes for Catheter Coating - Dissolution Kinetics and Antibiofilm Properties

Julia Gefter Shenderovich, Batya Zaks, David Kirmayer, Eran Lavy, Doron Steinberg, Michael Friedman

Eur J Pharm Sci. 2018 Jan 15;112:1-7.

PMID: 29104066

Abstract:

Catheter-associated urinary tract infections are difficult to eradicate or prevent, due to their biofilm-related nature. Chlorhexidine, a widely used antiseptic, was previously found to be effective against catheter-related biofilms. For the present study, we developed sustained-release chlorhexidine varnishes for catheter coating and evaluated their antibiofilm properties and chlorhexidine-dissolution kinetics under various conditions. The varnishes were based on ethylcellulose or ammonio methacrylate copolymer type A (Eudragit® RL). Chlorhexidine was released by diffusion from a heterogeneous matrix in the case of the ethylcellulose-based formulation, and from a homogeneous matrix in the case of Eudragit® RL. This dictated the release pattern of chlorhexidine under testing conditions: from film specimens, and from coated catheters in a static or flow-through system. Momentary saturation was observed with the flow-through system in Eudragit® RL-based coatings, an effect that might be present in vivo with other formulations as well. The coatings were retained on the catheters for at least 2weeks, and showed prolonged activity in a biological medium, including an antibiofilm effect against Pseudomonas aeruginosa. The current study demonstrates the potential of catheter coatings with sustained release of chlorhexidine in the prevention of catheter-associated urinary tract infections.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP33434241-A Ammonio methacrylate copolymer type A Ammonio methacrylate copolymer type A 33434-24-1 Price
qrcode