0

Comparison of Superoxide Detection Abilities of Newly Developed Spin Traps in the Living Cells

Keita Saito, Miho Takahashi, Masato Kamibayashi, Toshihiko Ozawa, Masahiro Kohno

Free Radic Res. 2009 Jul;43(7):668-76.

PMID: 19479584

Abstract:

This study compared the superoxide detection abilities of four spin traps, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO), 5-(diphenylphosphinoyl)-5-methyl-1pyrroline N-oxide (DPPMPO) and 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) in living cells. Electron spin resonance (ESR) signals of the superoxide adducts were observed when spin traps were added to a suspension of human oral polymorphonuclear leukocytes (OPMNs) stimulated by phorbol 12-myristate 13-acetate. The ESR signal of the CYPMPO-superoxide adduct (CYPMPO-OOH) increased for 24 min after the initiation of the reaction, whereas the signals from DMPO-OOH and DPPMPO-OOH peaked at 6 and 10 min, respectively. The maximum concentrations of DMPO-OOH, DPPMPO-OOH and CYPMPO-OOH in OPMNs were 1.9, 6.0 and 10.7 microM, respectively. Furthermore, CYPMPO could more efficiently trap superoxide in blood PMNs compared with DEPMPO. From these results, it was concluded that CYPMPO performs better than DMPO, DPPMPO and DEPMPO for superoxide measurements in living cell systems because it has lower cytotoxicity and its superoxide adduct has a longer lifetime.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP934182099 CYPMPO CYPMPO 934182-09-9 Price
qrcode