0

Crystal Structure of the Superconducting Phase of Sulfur Hydride

Mari Einaga, Masafumi Sakata, Takahiro Ishikawa, Katsuya Shimizu, Mikhail I Eremets, Alexander P Drozdov, Ivan A Troyan, Naohisa Hirao, Yasuo Ohishi

Nat Phys. 2016 Sep;12(9):835-838.

PMID: 28553364

Abstract:

A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure1, 2. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with theoretically predicted body-centered cubic (bcc) structure for H3S (Ref.3). The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure4-6.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP13536942 Deuterium sulfide Deuterium sulfide 13536-94-2 Price
qrcode