0

Cytoplasmic TAF2-TAF8-TAF10 Complex Provides Evidence for Nuclear holo-TFIID Assembly From Preformed Submodules

Simon Trowitzsch, Cristina Viola, Elisabeth Scheer, Sascha Conic, Virginie Chavant, Marjorie Fournier, Gabor Papai, Ima-Obong Ebong, Christiane Schaffitzel, Juan Zou, Matthias Haffke, Juri Rappsilber, Carol V Robinson, etc.

Nat Commun. 2015 Jan 14;6:6011.

PMID: 25586196

Abstract:

General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID-a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)-assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8-TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core-TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo-TFIID, regulated by nuclear import of preformed cytoplasmic submodules.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
IAR42414923 TFIID, native complex human TFIID, native complex human Price
qrcode