0

Degradable Poly(amidoamine) Hydrogels as Scaffolds for in Vitro Culturing of Peripheral Nervous System Cells

Nicolò Mauro, Amedea Manfredi, Elisabetta Ranucci, Patrizia Procacci, Michele Laus, Diego Antonioli, Cristina Mantovani, Valerio Magnaghi, Paolo Ferruti

Macromol Biosci. 2013 Mar;13(3):332-47.

PMID: 23239646

Abstract:

This paper reports on the synthesis and physico-chemical, mechanical, and biological characterization of two sets of poly(amidoamine) (PAA) hydrogels with potential as scaffolds for in vivo peripheral nerve regeneration. They are obtained by polyaddition of piperazine with N,N'-methylenebis(acrylamide) or 1,4-bis(acryloyl)piperazine with 1,2-diaminoethane as cross-linking agent and exhibit a combination of relevant properties, such as mechanical strength, biocompatibility, biodegradability, ability to induce adhesion and proliferation of Schwann cells (SCs) preserving their viability. Moreover, the most promising hydrogels, that is those deriving from 1,4-bis(acryloyl)piperazine, allow the in vitro growth of the sensitive neurons of the dorsal root ganglia, thus getting around a critical point in the design of conduits for nerve regeneration.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP6342172-A 1,4-Bis(acryloyl)piperazine 1,4-Bis(acryloyl)piperazine 6342-17-2 Price
qrcode