0

Determination of Hydroxyurea in Capsules and Biological Fluids by Ion-Selective Potentiometry and Fluorimetry

Amira M El-Kosasy

J AOAC Int. Jan-Feb 2003;86(1):15-21.

PMID: 12607735

Abstract:

Two hydroxyurea selective electrodes were investigated with beta-cyclodextrin used as ionophore and either tetrakis (p-chlorophenyl) borate (electrode 1), or tetrakis [3,4-bis (trifluoromethyl) phenyl] borate (electrode 2), as a fixed anionic site in a polymeric matrix of carboxylated polyvinyl chloride. Linear responses of hydroxyurea within a concentration range of 10(-5)-10(-)3 M with slopes of 51.2 and 58.6 mV/decade with pH 3-6 were obtained by using electrodes 1 and 2, respectively. Two spectrofluorimetric methods involving the formation of drug-AI(III) complex (method 3) and drug-Mg(II) complex (method 4) at pH 5 were also investigated. These complexes emit fluorescence at wavelengths of 380 and 355 nm, after excitation at 305 nm, for AI and Mg complexes, respectively. The calibration graphs were rectilinear from 0.5 to 2.5 microg/mL for the AI complex and 1 to 5 microg/mL for the Mg complex. The 4 proposed methods display useful analytical characteristics for determination of hydroxyurea, with average recoveries of 100.2 +/- 0.83 and 99.4 +/- 1.81% in capsules and 99.7 +/- 0.70 and 99.4 +/- 1.25% in biological fluids for the potentiometric and fluorimetric methods, respectively. Results obtained by the proposed procedures were statistically analyzed and compared with those obtained by the U.S. Pharmacopeial method. The 4 proposed procedures were also used to determine the stability of the drug in the presence of its degradate, hydroxylamine.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP119110382 Magnesium ionophore III Magnesium ionophore III 119110-38-2 Price
qrcode