0

Differentiation of Human Pluripotent Stem Cells to Cells Similar to Cord-Blood Endothelial Colony-Forming Cells

Nutan Prasain, Man Ryul Lee, Sasidhar Vemula, Jonathan Luke Meador, Momoko Yoshimoto, Michael J Ferkowicz, Alexa Fett, Manav Gupta, Brian M Rapp, Mohammad Reza Saadatzadeh, Michael Ginsberg, Olivier Elemento, etc.

Nat Biotechnol. 2014 Nov;32(11):1151-1157.

PMID: 25306246

Abstract:

The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony-forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel-forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >10(8) ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
IAR4248782 VEGF165 from mouse VEGF165 from mouse Price
qrcode