0

Doping of Tetraalkylammonium Salts in Polyethylenimine Ethoxylated for Efficient Electron Injection Layers in Solution-Processed Organic Light-Emitting Devices

Satoru Ohisa, Michinori Suzuki, Takayuki Chiba, Junji Kido

ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25351-25357.

PMID: 31259510

Abstract:

For efficient electron injection, a method to control the work functions (WFs) of ZnO electrodes in organic light-emitting devices (OLEDs) is reported in this study. First, ZnO was modified by doping of tetraalkylammonium salts (TRAX) into polyethylenimine ethoxylated (PEIE) for the WF control. Tetrabutylammonium salts (TBAX), where X = chloride, bromide, iodide, acetate, thiocyanate, and tetrafluoroborate anions, were doped into PEIE. A WF of nondoped PEIE-modified ZnO was 3.65 eV, whereas TBAX-doped PEIE-modified ZnO exhibited WFs ranging from 3.52 to 3.00 eV depending on the anion. TBAX salts exhibited different electron-donating capabilities depending on the anion, and the doping of TBAX with a large electron-donating capability exhibited a large WF reduction effect. In addition, tetraethyl- and tetrahexylammonium chlorides were doped into PEIE. PEIE doped with TRACl containing long alkyl chains exhibited a large WF reduction effect due to its low electron-accepting capabilities. In addition, the WF reduction mechanism was considered by the depth direction analysis of the PEIE:TBAX films. Finally, the ZnO/PEIE:TRAX bilayers were applied as electron injection layers in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] emissive-layer-based OLEDs with an inverted structure. The ZnO/PEIE:TBAX devices with low WFs exhibited low driving voltages.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP15553501 Tetrahexylammonium tetrafluoroborate Tetrahexylammonium tetrafluoroborate 15553-50-1 Price
qrcode