0

Fenoxaprop-P-ethyl and Mesosulfuron-Methyl Resistance Status of Shortawn Foxtail (Alopecurus Aequalis Sobol.) in Eastern China

Wenlei Guo, Yanyan Chi, Li Feng, Xingshan Tian, Weitang Liu, Jinxin Wang

Pestic Biochem Physiol. 2018 Jun;148:126-132.

PMID: 29891363

Abstract:

Resistance to the acetyl-coenzyme A carboxylase (ACCase)- and acetolactate synthase (ALS)- inhibiting herbicides in shortawn foxtail (Alopecurus aequalis) has been reported in wheat fields of eastern China. To better understand the distribution of the resistant populations and the occurrence of the target-site mutations, 74 populations collected from Anhui, Jiangsu and Shandong province were surveyed, and the ACCase and ALS gene fragments, encompassing all the documented mutant codon positions, were amplified and sequenced. Plants from 37 and 34 populations survived fenoxaprop-P-ethyl and mesosulfuron-methyl treatment at 62.1 g a.i. ha-1 and 9 g a.i. ha-1 respectively, with different survival rates. Twenty-seven populations exhibited multiple resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl. Whole-plant dose-response experiments showed that the resistance index ranged from 6.2 to 167.8 for fenoxaprop-P-ethyl, and from 7.8 to 139.5 for mesosulfuron-methyl. Four ACCase (I1781L, I2041N, I2041T and D2078G) and four ALS (P197R, P197S, P197T and W574 L) resistance mutations were detected respectively. Individuals containing two amino acid substitutions were also found. D2078G and W574 L were predominant ACCase and ALS gene mutations respectively. This study has shown that fenoxaprop-P-ethyl and mesosulfuron-methyl resistance was prevalent in A. aequalis in eastern China, and target site mutations in the ACCase and ALS gene were one of the most common mechanisms.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP71283802 Fenoxaprop-P-ethyl Fenoxaprop-P-ethyl 71283-80-2 Price
qrcode