0

High-Efficiency Red Organic Light-Emitting Diodes With External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter

Yuan-Lan Zhang, Quan Ran, Qiang Wang, Yuan Liu, Christian Hänisch, Sebastian Reineke, Jian Fan, Liang-Sheng Liao

Adv Mater. 2019 Oct;31(42):e1902368.

PMID: 31490581

Abstract:

Researchers have spared no effort to design new thermally activated delayed fluorescence (TADF) emitters for high-efficiency organic light-emitting diodes (OLEDs). However, efficient long-wavelength TADF emitters are rarely reported. Herein, a red TADF emitter, TPA-PZCN, is reported, which possesses a high photoluminescence quantum yield (ΦPL ) of 97% and a small singlet-triplet splitting (ΔEST ) of 0.13 eV. Based on the superior properties of TPA-PZCN, red, deep-red, and near-infrared (NIR) OLEDs are fabricated by utilizing different device structure strategies. The red devices obtain a remarkable maximum external quantum efficiency (EQE) of 27.4% and an electroluminescence (EL) peak at 628 nm with Commission Internationale de L'Eclairage (CIE) coordinates of (0.65, 0.35), which represents the best result with a peak wavelength longer than 600 nm among those of the reported red TADF devices. Furthermore, an exciplex-forming cohost strategy is adopted. The devices achieve a record EQE of 28.1% and a deep-red EL peak at 648 nm with the CIE coordinates of (0.66, 0.34). Last, nondoped devices exhibit 5.3% EQE and an NIR EL peak at 680 nm with the CIE coordinates of (0.69, 0.30).

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
IAR42418205 Fluorescent red NIR 680 Fluorescent red NIR 680 Price
qrcode