0

High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes

Sangkyu Lee, Wonsik Eom, Hun Park, Tae Hee Han

ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25332-25338.

PMID: 28696654

Abstract:

Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO2 crystals. As a result, high-temperature stable anatase TiO2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO2 nanofibers, the electrode prepared with anatase TiO2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g-1).

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP2388105-A Lithium isopropoxide Lithium isopropoxide 2388-10-5 Price
qrcode