0

Induction of E-cadherin+ Human Amniotic Fluid Cell Differentiation Into Oocyte-Like Cells via Culture in Medium Supplemented With Follicular Fluid

Te Liu, Yongyi Huang, Yanzhen Bu, Yanhui Zhao, Gang Zou, Zhixue Liu

Mol Med Rep. 2014 Jul;10(1):21-8.

PMID: 24788191

Abstract:

Pluripotent human amniotic fluid cells (HuAFCs) can differentiate into various types of somatic cell in vitro. However, their differentiation into oocyte-like cells has never been described to the best of our knowledge. In the present study, differentiation of E-cadherin+ and E-cadherin- HuAFC sub-populations into oocyte-like cells was induced via culture in medium containing bovine follicular fluid and β-mercaptoethanol. The E-cadherin+ HuAFCs expressed DAZL highly. Post-induction, cells with an oocyte-like phenotype were found among the E-cadherin+ HuAFCs, expressing markers specific to germ cells and oocytes (VASA, ZP3 and GDF9) and meiosis (DMC1 and SCP3). When specific small interfering RNA (siRNA) was used to suppress E-cadherin in the E-cadherin+ HuAFCs, the levels of DAZL expression were reduced. Post-induction, the morphology of the siRNA‑E‑cadherin HuAFCs was poorer and the expression levels of germ cell-specific markers were lower compared with those of the siRNA-mock HuAFCs. Therefore, E-cadherin+ HuAFCs could be more easily induced to differentiate into oocyte-like cells by bovine follicular fluid and β-mercaptoethanol. In addition, the E-cadherin+ HuAFCs exhibited potential characteristics of DAZL protein expression, and thus it was conjectured that bovine follicular fluid acts on DAZL protein and promotes E-cadherin+ HuAFC differentiation into oocyte-like cells.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
IAR4248409 E-Cadherin human E-Cadherin human Price
qrcode