0

Influence of the Base and Diluent Monomer on Network Characteristics and Mechanical Properties of Neat Resin and Composite Materials

Nívea Regina de Godoy Fróes-Salgado, Vinícius Gajewski, Bárbara Pick Ornaghi, Carmem Silvia Costa Pfeifer, Marcia Margarete Meier, Tathy Aparecida Xavier, Roberto Ruggiero Braga

Odontology. 2015 May;103(2):160-8.

PMID: 24728606

Abstract:

This study evaluated the effect of the combination of two dimethacrylate-based monomers [bisphenol A diglycidyl dimethacrylate (BisGMA) or bisphenol A ethoxylated dimethacrylate (BisEMA)] with diluents either derived from ethylene glycol dimethacrylate (ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate) or 1,10-decanediol dimethacrylate (D3MA) on network characteristics and mechanical properties of neat resin and composite materials. The degree of conversion, maximum rate of polymerization and water sorption/solubility of unfilled resins and the flexural strength and microhardness of composites (after 24 h storage in water and 3 months storage in a 75 vol% ethanol aqueous solution) were evaluated. Data were analyzed with two-way ANOVA and Tukey's test (α = 0.05). The higher conversion and lower water sorption presented by BisEMA co-polymers resulted in greater resistance to degradation in ethanol compared with BisGMA-based materials. In general, conversion and mechanical properties were optimized with the use of long-chain dimethacrylate derivatives of ethylene glycol. D3MA rendered more hydrophobic materials, but with relatively low conversion and mechanical properties.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP109171 Tetraethylene glycol dimethacrylate Tetraethylene glycol dimethacrylate 109-17-1 Price
qrcode