0

Inhibition of L-homocysteic Acid and Buthionine Sulphoximine-Mediated Neurotoxicity in Rat Embryonic Neuronal Cultures With Alpha-Lipoic Acid Enantiomers

B Lockhart, C Jones, C Cuisinier, N Villain, D Peyroulan, P Lestage

Brain Res. 2000 Feb 14;855(2):292-7.

PMID: 10677603

Abstract:

In the present report, we have set out to investigate the potential capacity of both the oxidised and reduced forms of RS-alpha-lipoic acid, and its separate R-(+) and S-(-)enantiomers, to prevent cell death induced with L-homocysteic acid (L-HCA) and buthionine sulphoximine (BSO) in rat primary cortical and hippocampal neurons. L-HCA induced a concentration-dependent neurotoxic effect, estimated by cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) reduction, in primary neurons, but was significantly more toxic for hippocampal (EC(50)=197 microM) compared with cortical neurons (EC(50)=1016 microM) whereas D-HCA demonstrated only moderate (<20%) toxicity. On the other hand, cortical and hippocampal cultures were equally susceptible (341 and 326 microM, respectively) to the neurotoxic action of BSO. Antioxidants including butylated hydroxyanisole, propyl gallate and vitamin E protected cells against the neurotoxic effect of L-HCA and BSO. However, N-acetyl-cysteine and tert-butylphenyl nitrone, although capable of abrogating L-HCA-mediated cell death showed no protective effect against BSO-mediated toxicity. RS-alpha-lipoic acid, RS-alpha-dihydrolipoic acid and the enantiomers R-alpha-lipoic acid and S-alpha-lipoic acid protected cells against L-HCA-mediated toxicity with EC(50) values between 3.1-8.3 microM in primary hippocampal neurons and 2.6-16.8 microM for cortical neurons. However, RS-alpha-lipoic acid, RS-alpha-dihydrolipoic acid, and S-alpha-lipoic acid failed to protect cells against the degeneration induced by prolonged exposure to BSO, whereas the natural form, R-alpha-lipoic, was partially active under the same conditions. The present results indicate a unique sensitivity of hippocampal neurons to the effect of L-HCA-mediated toxicity, and suggest that RS-alpha-lipoic acid, and in particular the R-alpha-enantiomeric form is capable of preventing oxidative stress-mediated neuronal cell death in primary cell culture.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP14857773 L-Homocysteic acid L-Homocysteic acid 14857-77-3 Price
qrcode