0

Mutagenesis at the Human Tachykinin NK(2) Receptor to Define the Binding Site of a Novel Class of Antagonists

Stefania Meini, Francesca Bellucci, Claudio Catalani, Paola Cucchi, Riccardo Patacchini, Luigi Rotondaro, Maria Altamura, Sandro Giuliani, Alessandro Giolitti, Carlo Alberto Maggi

Eur J Pharmacol. 2004 Mar 19;488(1-3):61-9.

PMID: 15044036

Abstract:

The pharmacological profile of novel antagonists endowed with high affinity for the human tachykinin NK(2) receptor is presented. MEN13918 (Ngamma[Nalpha[Nalpha(benzo[b]thiophen-2-yl)carbonyl]-1-aminocyclohexan-1-carboxy]-d-phenylalanyl]-3-cis-aminocyclohexan-1-carboxylic-acid-N-(1S,2R)-2-aminocyclohexyl)amide trifluoroacetate salt) and MEN14268 (Nalpha[Nalpha(benzo[b]thiophen-2-yl)carbonyl)-1-aminocyclopentane-1-carboxyl]-d-phenylalanine-N-[3(morpholin-4-yl)propyl]amide trifluoroacetate salt) were more potent in blocking neurokinin A (NKA, His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH(2)) induced contraction in human, which induced greater contraction in human (pK(B) 9.1 and 8.3) than rat (pK(B) 6.8 and <6) urinary bladder smooth muscle preparation in vitro. In agreement with functional data, in membrane preparations of CHO cells stably expressing the human NK(2) receptors, both MEN13918 and MEN14268 potently inhibited the binding of agonist ([(125)I]NKA, K(i) 0.2 and 2.8 nM) and antagonist ([(3)H]nepadutant, K(i) 0.1 and 2.2 nM, [(3)H]SR48968 K(i) 0.4 and 6.9 nM) radioligands. Using site-directed mutagenesis and radioligands binding we identified six residues in the transmembrane (TM) helices that are critical determinants for the studied antagonists affinity. To visualize these experimental findings, we constructed a homology model based on the X-ray crystal structure of bovine rhodopsin and suggested a possible binding mode of these newly discovered antagonist ligands to the human tackykinin NK(2) receptor. Both MEN13918 and MEN14268 bind amongst TM4 (Cys167Gly), TM5 (Tyr206Ala), TM6 (Tyr266Ala, Phe270Ala), and TM7 (Tyr289Phe, Tyr289Thr). MEN13918 and MEN14268 diverging binding profile at Y289 mutations in TM7 (Tyr289Phe, Tyr289Thr) suggests a relation of their different chemical moieties with this residue. Moreover, the different influence on binding of these two ligands by mutations located deep along the inner side of TM6 (Phe270Ala, Tyr266Ala, Trp263Ala) indicates a nonequivalent positioning, although occupying the same binding crevice. Furthermore, binding data indicate the Ile202Phe mutation, which mimics the wild-type rat NK(2) receptor sequence, as a species selectivity determinant. In summary, data with mutant receptors describe, for these new tachykinin NK(2) receptor antagonists, a binding site which is partially overlapping either with that of the cyclized peptide antagonist nepadutant (cyclo-[[Asn(beta-d-GlcNAc)-Asp-Trp-Phe-Dpr-Leu]cyclo(2beta-5beta)] or the nonpeptide antagonist SR48968 ((S)-N-methyl-N[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide).

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
ALP141923402 Ser-Phe-Leu-Leu-Arg-Asn-amide trifluoroacetate salt Ser-Phe-Leu-Leu-Arg-Asn-amide trifluoroacetate salt 141923-40-2 (free base) Price
AP342877558 D-Lys-D-Leu-D-Val-D-Phe-D-Phe-D-Ala trifluoroacetate salt D-Lys-D-Leu-D-Val-D-Phe-D-Phe-D-Ala trifluoroacetate salt 342877-55-8 Price
IAR424970 N-Acetyl-Trp-Glu-His-Asp-7-amido-4-trifluoromethylcoumarin trifluoroacetate salt N-Acetyl-Trp-Glu-His-Asp-7-amido-4-trifluoromethylcoumarin trifluoroacetate salt Price
qrcode