0

Myosin IIA and Formin Dependent Mechanosensitivity of Filopodia Adhesion

N O Alieva, A K Efremov, S Hu, D Oh, Z Chen, M Natarajan, H T Ong, A Jégou, G Romet-Lemonne, J T Groves, M P Sheetz, J Yan, A D Bershadsky

Nat Commun. 2019 Aug 9;10(1):3593.

PMID: 31399564

Abstract:

Filopodia, dynamic membrane protrusions driven by polymerization of an actin filament core, can adhere to the extracellular matrix and experience both external and cell-generated pulling forces. The role of such forces in filopodia adhesion is however insufficiently understood. Here, we study filopodia induced by overexpression of myosin X, typical for cancer cells. The lifetime of such filopodia positively correlates with the presence of myosin IIA filaments at the filopodia bases. Application of pulling forces to the filopodia tips through attached fibronectin-coated laser-trapped beads results in sustained growth of the filopodia. Pharmacological inhibition or knockdown of myosin IIA abolishes the filopodia adhesion to the beads. Formin inhibitor SMIFH2, which causes detachment of actin filaments from formin molecules, produces similar effect. Thus, centripetal force generated by myosin IIA filaments at the base of filopodium and transmitted to the tip through actin core in a formin-dependent fashion is required for filopodia adhesion.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP340316623 SMIFH2 SMIFH2 340316-62-3 Price
qrcode