0

Nitric Oxide-Epoxygenase Interactions and Arachidonate-Induced Dilation of Rat Renal Microvessels

I T Udosen, H Jiang, H C Hercule, A O Oyekan

Am J Physiol Heart Circ Physiol. 2003 Nov;285(5):H2054-63.

PMID: 12881223

Abstract:

Nitric oxide (NO) is an inhibitor of hemoproteins including cytochrome P-450 enzymes. This study tested the hypothesis that NO inhibits cytochrome P-450 epoxygenase-dependent vascular responses in kidneys. In rat renal pressurized microvessels, arachidonic acid (AA, 0.03-1 microM) or bradykinin (BK, 0.1-3 microM) elicited NO- and prostanoid-independent vasodilation. Miconazole (1.5 microM) or 6-(2-propargyloxyphenyl)hexanoic acid (30 microM), both of which are inhibitors of epoxygenase enzymes, or the fixing of epoxide levels with 11,12-epoxyeicosatrienoic acid (11,12-EET; 1 and 3 microM) inhibited these responses. Apamin (1 microM), which is a large-conductance Ca2+-activated K+ (BKCa) channel inhibitor, or 18alpha-glycyrrhetinic acid (30 microM), which is an inhibitor of myoendothelial gap junctional electromechanical coupling, also inhibited these responses. NO donors spermine NONOate (1 and 3 microM) or sodium nitroprusside (0.3 and 3 microM) but not 8-bromo-cGMP (100 microM), which is an analog of cGMP (the second messenger of NO), blunted the dilation produced by AA or BK in a reversible manner without affecting that produced by hydralazine. However, the non-NO donor hydralazine did not affect the dilatory effect of AA or BK. Spermine NONOate did not affect the dilation produced by 11,12-EET, NS-1619 (a BKCa channel opener), or cromakalim (an ATP-sensitive K+ channel opener). AA and BK stimulated EET production, whereas hydralazine had no effect. On the other hand, spermine NONOate (3 microM) attenuated basal (19 +/- 7%; P < 0.05) and AA stimulation (1 microM, 29 +/- 9%; P < 0.05) of renal preglomerular vascular production of all regioisomeric EETs: 5,6-; 8,9-; 11,12-; and 14,15-EET. These results suggest that NO directly and reversibly inhibits epoxygenase-dependent dilation of rat renal microvessels without affecting the actions of epoxides on K+ channels.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP206052019 6-(2-Propargyloxyphenyl)hexanoic acid 6-(2-Propargyloxyphenyl)hexanoic acid 206052-01-9 Price
qrcode