0

Optical and Electrochemical Properties of Self-Organized TiO 2 Nanotube Arrays From Anodized Ti-6Al-4V Alloy

Henia Fraoucene, Vinsensia Ade Sugiawati, Djedjiga Hatem, Mohammed Said Belkaid, Florence Vacandio, Marielle Eyraud, Marcel Pasquinelli, Thierry Djenizian

Front Chem. 2019 Feb 8;7:66.

PMID: 30800655

Abstract:

Due to their high specific surface area and advanced properties, TiO2 nanotubes (TiO2 NTs) have a great significance for production and storage of energy. In this paper, TiO2 NTs were synthesized from anodization of Ti-6Al-4V alloy at 60 V for 3 h in fluoride ethylene glycol electrolyte by varying the water content and further annealing treatment. The morphological, structural, optical and electrochemical performances of TiO2 NTs were investigated by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), UV-Visible spectroscopy and electrochemical characterization techniques. By varying the water content in the solution, a honeycomb and porous structure was obtained at low water content and the presence of (α + β) phase in Ti-6Al-4V alloy caused not uniform etching. With an additional increase in water content, a nanotubular structure is formed in the (α + β) phases with different morphological parameters. The anatase TiO2 NTs synthesized with 20 wt% H2O shows an improvement in absorption band that extends into the visible region due the presence of vanadium oxide in the structure and the effective band gap energy (Eg) value of 2.25 eV. The TiO2 NTs electrode also shows a good cycling performance, delivering a reversible capacity of 82 mAh.g-1 (34 μAh.cm-2.μm-1) at 1C rate over 50 cycles.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP99906668 Ti 6Al 4V alloy (O) Ti 6Al 4V alloy (O) 99906-66-8 Price
qrcode