0

Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes

Himchan Cho, Su-Hun Jeong, Min-Ho Park, Young-Hoon Kim, Christoph Wolf, Chang-Lyoul Lee, Jin Hyuck Heo, Aditya Sadhanala, NoSoung Myoung, Seunghyup Yoo, Sang Hyuk Im, Richard H Friend, Tae-Woo Lee

Science. 2015 Dec 4;350(6265):1222-5.

PMID: 26785482

Abstract:

Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP6876375-A Methylammonium bromide Methylammonium bromide 6876-37-5 Price
qrcode