0

Polyolefin-Polar Block Copolymers From Versatile New Macromonomers

Christopher J Kay, Paul D Goring, Connah A Burnett, Ben Hornby, Kenneth Lewtas, Shaun Morris, Colin Morton, Tony McNally, Giles W Theaker, Carl Waterson, Peter M Wright, Peter Scott

J Am Chem Soc. 2018 Oct 24;140(42):13921-13934.

PMID: 30260641

Abstract:

A new metallocene-based polymerization mechanism is elucidated in which a zirconium hydride center inserts α-methylstyrene at the start of a polymer chain. The hydride is then regenerated by hydrogenation to release a polyolefin containing a single terminal α-methylstyrenyl group. Through the use of the difunctional monomer 1,3-diisopropenylbenzene, this catalytic hydride insertion polymerization is applied to the production of linear polyethylene and ethylene-hexene copolymers containing an isopropenylbenzene end group. Conducting simple radical polymerizations in the presence of this new type of macromonomer leads to diblock copolymers containing a polyolefin attached to an acrylate, methacrylate, vinyl ester, or styrenic segments. The new materials are readily available and exhibit interfacial phenomena, including the mediation of the mixing of immiscible polymer blends.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP60653578 Zirconium acrylate Zirconium acrylate 60653-57-8 Price
qrcode