0

Porous Fe@C Composites Derived From Silkworm Excrement for Effective Separation of Anisole Compounds

Yuxiang Wu, Yan Huang, Hong Huang, Yaseen Muhammad, Zuqiang Huang, Joseph Winarta, Yanjuan Zhang, Shuangxi Nie, Zhongxing Zhao, Bin Mu

ACS Omega. 2019 Dec 5;4(25):21204-21213.

PMID: 31867514

Abstract:

Silkworm excrement is a very useful biomass waste, composed of layer-structured fats and proteins, which are great precursors for carbon composite materials. In this work, new porous composites derived from silkworm excrement were prepared for selective separation of flavor 4-methylanisole from the binary 4-methylanisole/4-anisaldehyde mixture. In particular, the silkworm excrement, possessing a unique nanosheet structure, is converted into a graphite-like carbon by a simple calcination strategy followed by a metal-ion-doping procedure. This Fe@C composite exhibits a special nano-spongy morphology, anchoring Fe3C/Fe5C2 on the carbon nanosheets. Density functional theory simulations showed that 4-methylanisole presents a stronger π-π interaction and attraction forces with sp2 carbon nanosheets in Fe@C composites than 4-anisaldehyde. The selective adsorption experiments further confirmed that the Fe@C composites exhibited a 4-methylanisole capacity of 7.3 mmol/g at 298 K and the highest selectivity of 17 for an equimolar 4-methylanisole/4-anisaldehyde mixture among the examined adsorbents including MOFs and commercial activated carbon materials, which demonstrates the potential of this low-cost and eco-friendly porous carbon material as a promising sustainable adsorbent.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP104938 4-Methylanisole 4-Methylanisole 104-93-8 Price
qrcode