0

PPAR- γ Activation Exerts an Anti-inflammatory Effect by Suppressing the NLRP3 Inflammasome in Spinal Cord-Derived Neurons

Qing-Qi Meng, Zhen-Cheng Feng, Xing-Liang Zhang, Li-Qiong Hu, Min Wang, Hai-Feng Zhang, Si-Ming Li

Mediators Inflamm. 2019 Mar 13;2019:6386729.

PMID: 31015796

Abstract:

Persistent inflammation disrupts functional recovery after spinal cord injury (SCI). Peroxisome proliferator-activated receptor gamma (PPAR-γ) activation promotes functional recovery in SCI rats by inhibiting inflammatory cascades and increasing neuronal survival. We sought to clarify the relationship between PPAR-γ activation and NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome suppression, and the role of NF-κB in activating the NLRP3 inflammasome in neurons. In SCI rats, we found that rosiglitazone (PPAR-γ agonist) inhibited the expression of caspase-1. In in vitro neurons, G3335 (PPAR-γ antagonist) reversed the rosiglitazone-induced inhibition of caspase-1, interleukin 1 (IL-1β), and interleukin 6 (IL-6). Rosiglitazone inhibited the expression of NLRP3, caspase-1, IL-1β, and IL-6. However, the activator of NLRP3 could counteract this inhibition induced by PPAR-γ activation. NF-κB did not participate in the process of rosiglitazone-induced inhibition of NLRP3. Consistent with our in vitro results, we verified that locomotor recovery of SCI rats in vivo was regulated via PPAR-γ, NLRP3, and NF-κB. These results suggest that PPAR-γ activation exerts an anti-inflammatory effect by suppressing the NLRP3 inflammasome-but not NF-κB-in neurons and that PPAR-γ activation is a promising therapeutic target for SCI.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP36099953-A G3335 G3335 36099-95-3 Price
qrcode