0

Probing the Interaction Between a DNA Nucleotide (Adenosine-5'-Monophosphate Disodium) and Surface Active Ionic Liquids by Rotational Relaxation Measurement and Fluorescence Correlation Spectroscopy

Arpita Roy, Pavel Banerjee, Rupam Dutta, Sangita Kundu, Nilmoni Sarkar

Langmuir. 2016 Oct 25;32(42):10946-10956.

PMID: 27690468

Abstract:

This article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (C12mimCl), and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([C4mim][C8SO4]). Dynamic light scattering (DLS) measurements and 1H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide (AMP) and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in the presence of DNA nucleotides. Additionally, the rotational motion of two oppositely charged molecules, rhodamine 6G perchlorate (R6G) and fluorescein sodium salt (Fl-Na), have been monitored in these aggregates. The rotational motion of R6G and Fl-Na differs significantly between SAILs micelles and SAILs-AMP containing larger micellar aggregates. The effect of negatively charged DNA nucleotide (AMP) addition into the cationic and anionic SAILs is more prominent for the cationic charged molecule R6G than that of anionic probe Fl-Na due to the favorable electrostatic interaction between the AMP and cationic R6G. Moreover, the influence of the anionic DNA nucleotide on the cationic and anionic SAIL micelles is monitored through the variation of the lateral diffusion motion of oppositely charged probe molecules (R6G and Fl-Na) inside these aggregates. This variation in diffusion coefficient values also suggests that the interaction pattern of these oppositely charged probes are different within the SAILs-nucleotide containing aggregates. Therefore, both rotational and translational diffusion measurements confirm that the DNA nucleotide (AMP) renders more rigid microenvironment within the micellar solution of SAILs.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
IAR42411306 Cytidine-15N3 5′-monophosphate sodium salt solution Cytidine-15N3 5′-monophosphate sodium salt solution Price
IAR42411307 Guanosine-15N5 5′-monophosphate sodium salt solution Guanosine-15N5 5′-monophosphate sodium salt solution Price
IAR42411308 Uridine-15N2 5′-monophosphate sodium salt solution Uridine-15N2 5′-monophosphate sodium salt solution Price
IAR42411309 Adenosine-15N5 5′-monophosphate sodium salt solution Adenosine-15N5 5′-monophosphate sodium salt solution Price
qrcode