0

Production of Highly Catalytic, Archaeal Pd(0) Bionanoparticles Using Sulfolobus Tokodaii

Santisak Kitjanukit, Keiko Sasaki, Naoko Okibe

Extremophiles. 2019 Sep;23(5):549-556.

PMID: 31218490

Abstract:

The thermo-acidophilic archaeon, Sulfolobus tokodaii, was utilized for the production of Pd(0) bionanoparticles from acidic Pd(II) solution. Use of active cells was essential to form well-dispersed Pd(0) nanoparticles located on the cell surface. The particle size could be manipulated by modifying the concentration of formate (as electron donor; e-donor) and by addition of enzymatic inhibitor (Cu2+) in the range of 14-63 nm mean size. Since robust Pd(II) reduction progressed in pre-grown S. tokodaii cells even in the presence of up to 500 mM Cl-, it was possible to conversely utilize the effect of Cl- to produce even finer and denser particles in the range of 8.7-15 nm mean size. This effect likely resulted from the increasing stability of anionic Pd(II)-chloride complex at elevated Cl- concentrations, eventually allowing involvement of greater number of initial Pd(0) crystal nucleation sites (enzymatic sites). The catalytic activity [evaluated based on Cr(VI) reduction reaction] of Pd(0) bionanoparticles of varying particle size formed under different conditions were compared. The finest Pd(0) bionanoparticles obtained at 50 mM Cl- (mean 8.7 nm; median 5.6 nm) exhibited the greatest specific Cr(VI) reduction rate, with four times higher catalytic activity compared to commercial Pd/C. The potential applicability of S. tokodaii cells in the recovery of highly catalytic Pd(0) nanoparticles from actual acidic chloride leachate was, thus, suggested.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP10049055 Chromium(II) chloride Chromium(II) chloride 10049-05-5 Price
qrcode