0

Quantification of the Glycogen 13C-1 NMR Signal During Glycogen Synthesis in Perfused Rat Liver

N Bergans, T Dresselaers, L Vanhamme, P Van Hecke, S Van Huffel, F Vanstapel

NMR Biomed. 2003 Feb;16(1):36-46.

PMID: 12577296

Abstract:

We studied glycogen synthesis from glucose in perfused livers of fed (n = 4) and 24 h starved (n = 7) rats. Glycogenolysis was inhibited by BAY R3401 (150 microM) and proglycosyn (100 microM). After 60 min, we replaced 99% (13)C-1 glucose by natural abundance glucose. This pulse-chase design allowed us to recognize residual ongoing futile glycogen turnover from the release of initially deposited (13)C-label, into the (13)C-free chase medium. Net residual turnover was less than 2 +/- 0.7% and 0.6 +/- 0.2% of 1-(13)C glycogen deposition rates of 0.31 +/- 0.04 and 0.99 +/- 0.04 micromol glucose g(-1) min(-1), in starved and fed livers, respectively. The 1-(13)C glycogen signal was monitored throughout the experiment with proton-decoupled (13)C NMR spectroscopy and analyzed in the time domain using AMARES. We noticed progressive line-broadening in any single experiment in the chase phase. One or a sum of two to three overlapping Lorentzians, with different exponential damping factors, were fitted to the signal. When the S/N was better than 40, the fit always delivered a small and a broad component. In the chase phase, the fit with a single Lorentzian resulted in a decline of glycogen signal by about 15 +/- 4 and 12 +/- 2% in starved and fed rats, respectively. This apparent decline in 1-(13)C glycogen signal could not be accounted for by the appearance of equivalent amounts of (13)C-labeled metabolites in the perfusate. The fit with a sum of two Lorentzians resulted in a decline of glycogen signal intensity of 7 +/- 5 and 5 +/- 3% in starved and fed rats, respectively, which reduced the apparent turnover to 8 +/- 9% and 6 +/- 4%, respectively. Quantification of the growing (13)C-1 glycogen signal requires a model function that accommodates changes in line shape throughout the period under study.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP100276037 BAY R3401 BAY R3401 100276-03-7 Price
qrcode

We use cookies to understand how you use our site and to improve the overall user experience. This includes personalizing content and advertising. Read our Privacy Policy

Accept Cookies
x