0

Quenching of Singlet Molecular Oxygen by Phthalocyanines and Naphthalocyanines

A A Krasnovsky Jr, M A Rodgers, M G Galpern, B Rihter, M E Kenney, E A Lukjanetz

Photochem Photobiol. 1992 May;55(5):691-6.

PMID: 1528982

Abstract:

Using the direct measurement of the photosensitized luminescence of singlet molecular oxygen (1O2) the rate constants (kq) have been determined for 1O2 quenching by the monomeric molecules of the following phthalocyanines and naphthalocyanines in chloroform: tetra-(4-tert-butyl) phthalocyanine (I); octa-(3,6-butoxy) phthalocyanine (II), tetra-(6-tert-butyl)-2,3 naphthalocyanine (III), aluminium tetra-(1-tert-phenyl)-2,3 naphthalocyanine (IV), tri-(n-hexyl-siloxy) derivatives of silicon- (V), tin- (VI), aluminium- (VII) and gallium- (VIII) 2,3 naphthalocyanine. The following kq values were obtained (kq x 10(-8) M-1 s-1): 2.9 (I), 59 (II), 100 (III), 20 (IV), 3.9 (V), 53 (VI), 33 (VII), 110 (VIII). As most of the quenchers have the low-lying triplet levels, a contribution of the quenching mechanism based on the energy transfer from 1O2 to these levels has been analysed. A formula is proposed describing the relation between kq values caused by this mechanism, and photophysical constants of the quencher triplet state. This formula was applied to phthalocyanines, naphthalocyanines, beta-carotene and bacterochlorophyll a. The data suggest that the energy transfer can fully explain the activity of V and strongly contributes into the activities of II, III and VI-VIII. A charge transfer interaction might be an additional mechanism involved in 1O2 quenching by compounds studied. As some phthalocyanines and naphthalocyanines are strong physical quenchers of singlet oxygen they can be used as efficient inhibitors for photodestructive processes in photochemical systems.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP110479588 Tin(II) 2,3-naphthalocyanine Tin(II) 2,3-naphthalocyanine 110479-58-8 Price
qrcode