0

Rapid Detection of Taste and Odor Compounds in Water Using the Newly Invented Chemi-Ionization Technique Coupled With Time-Of-Flight Mass Spectrometry

Haixu Zhang, Pengkun Ma, Jinian Shu, Bo Yang, Jingyun Huang

Anal Chim Acta. 2018 Dec 4;1035:119-128.

PMID: 30224129

Abstract:

Taste and odor (T&O) compounds are widespread in water environments and have attracted considerable public attention. Nowadays, the standard detections of these chemicals rely mainly on off-line methods such as GC-MS or evaluation by trained analysts' senses. In this study, we report a method for the rapid detection of T&O compounds in water by exploiting a newly invented chemi-ionization source, in combination with headspace vapor measurement at room temperature. The calibrated limits of detection (LODs) of 2-methylbutyraldehyde, methyl tert-butyl ether (MTBE), methyl methacrylate (MMA), 2-isobutyl-3-methyoxypyrazine (IBMP), and 2-isopropyl-3-methoxypyrazine (IPMP) are in the range of 3.5-50.2 ng L-1, and the estimated LODs of 2-methylisoborneol (2-MIB) and geosmin (GSM) are 0.25 and 0.77 ng L-1, respectively. The calibration results reveal that the instrumental LODs for 2-methylbutyraldehyde, MTBE, MMA, β-cyclocitral, 2-MIB, and GSM are 1-2 orders of magnitude better than the odor thresholds of humans. The accuracy, precision, recovery, and linearity (R2) of the method are tested. Water samples from city tap water and three rivers in Beijing are assessed using this technique, and the typical T&O compositions are observed with concentrations ranging from 0.2 to 297 ng L-1. The new ultra-sensitive rapid detection method shows comparable sensitivities to the existing off-line technique and displays great potential for real-time detection of T&O pollution in water environments.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP96173 2-Methylbutyraldehyde 2-Methylbutyraldehyde 96-17-3 Price
qrcode