0

Rational Design of D-π-A Organic Dyes to Prevent "Trade Off" Effect in Dye-Sensitized Solar Cells

Panpan Heng, Jianbin Xu, Lemin Mao, Li Wang, Wenpeng Wu, Jinglai Zhang

Spectrochim Acta A Mol Biomol Spectrosc. 2019 Oct 5;221:117167.

PMID: 31170604

Abstract:

It is an easy task to simulate the spectrum properties for the organic dyes applied in dye-sensitized solar cells (DSSCs) if the suitable method is chosen. However, it is still difficult to quantitatively determine the overall performance for them. In this work, the short-circuit photocurrent density (JSC) and open circuit photovoltage (VOC) are quantitatively calculated by combination of the density functional theory and first principle for DSSCs based on four different organic dyes, 2-((4'-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)biphenyl-4-yl)methylene)but-3-ynoic acid (1), 2-((5-(4-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)phenyl)thiophen-2-yl)methylene)but-3-ynoic acid (2), 3-(7-(4-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)-4H-cyclopenta[2,1-b:3,4-b']-dithiophene)-2-cyanoacrylic acid (3), and 3-(7-(4-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)phenyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-cyanoacrylic acid (4), in which the triarylamine is donor and the cyanoacrylic acid is acceptor along with variable π group. The 3 and 4 are new theoretically designed organic dyes on the basis of 1 and 2 with different electron-rich group as π group. Both JSC and VOC of 3 and 4 are improved as compared with those of 1 and 2, which breaks the normal "trade-off" rule. As a result, the power conversion efficiency (PCE) of 3 and 4 is improved, especially for 3. The aggregation effect is also considered to evaluate the overall performance, which is favorable to further enhance the reliability of theoretical design.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
LS779169 3-(5-Bromothieno[3,2-b]thiophen-2-yl)-2-cyanoacrylic acid 3-(5-Bromothieno[3,2-b]thiophen-2-yl)-2-cyanoacrylic acid Price
qrcode