0

Redox Properties and Prooxidant Cytotoxicity of a Neuroleptic Agent 6,7-dinitrodihydroquinoxaline-2,3-dione (DNQX)

Jonas Šarlauskas, Aušra Nemeikaitė-Čėnienė, Lina Misevičienė, Kastis Krikštopaitis, Žilvinas Anusevičius, Narimantas Čėnas

Acta Biochim Pol. 2013;60(2):227-31.

PMID: 23757451

Abstract:

In order to characterize the possible mechanism(s) of cytotoxicity of a neuroleptic agent 6,7-dinitrodihydroquinoxaline-2,3-dione (DNQX) we examined the redox properties of DNQX, and its mononitro- (NQX) and denitro- (QX) derivatives. The irreversible electrochemical reduction of the nitro groups of DNQX was characterized by the reduction peak potentials (Ep,7) of -0.43 V and -0.72 V vs. Ag/AgCl at pH 7.0, whereas NQX was reduced at Ep,7 = -0.67 V. The reactivities of DNQX and NQX towards the single-electron transferring enzymes NADPH:cytochrome P-450 reductase and NADPH:adrenodoxin reductase/adrenodoxin complex were similar to those of model nitrobenzenes with the single-electron reduction potential (E¹₇) values of -0.29 V - -0.42 V. DNQX and NQX also acted as substrates for two-electron transferring mammalian NAD(P)H:quinone oxidoreductase (DT-diaphorase). The cytotoxicity of DNQX in bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) was prevented by antioxidants and an inhibitor of NQO1, dicoumarol, and was enhanced by the prooxidant alkylating agent 1,3-bis(2-chloromethyl)-1-nitrosourea. A comparison with model nitrobenzene compounds shows that the cytotoxicity of DNQX and NQX reasonably agrees with the ease of their electrochemical reduction, and/or their reactivities towards the used enzymatic single-electron reducing systems. Thus, our data imply that the cytotoxicity of DNQX in FLK cells is exerted mainly through oxidative stress.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP2379579 DNQX DNQX 2379-57-9 Price
qrcode