0

Resistance From Agar Medium Impacts the Helical Growth of Arabidopsis Primary Roots

Jie Yan, Bochu Wang, Yong Zhou, Shilei Hao

J Mech Behav Biomed Mater. 2018 Sep;85:43-50.

PMID: 29852351

Abstract:

Agar is widely used in studies of root growth since it can be mixed at different concentrations to impact mechanical impedance. At high concentrations (1.2-1.5%), growth of Arabidopsis roots has been found to be wavy, but little research has explored this behavior based on a quantitative understanding of mechanical behavior. To this end, agar media with concentration ranging from 0.5% to 1.2% were prepared to produce gradient resistance during root penetration, and Young's moduli and penetrometer resistance were tested. Arabidopsis roots were then cultivated in these agar media with gradient stiffness. The result showed that Young's modulus increased linearly with the increase of concentration of agar media. For Arabidopsis primary roots, it was preferred to develop a helical pattern in agar media with concentration from 0.5% to 1.0%. As stiffness of agar increased, the percentage of helical roots and helix diameters in each agar medium declined; root lengths and auxin distributions showed variety. We demonstrate that the size of helical deformation decreases with agar stiffness as expected by theoretical analysis based on a combination of growth-induced mechanical buckling. In conclusion, the resistance from agar media impacts the properties of root helix, and helical roots growth is driven by growth force. Growth force and external mechanical forces contribute to root phenotypes in Arabidopsis.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP9002180-A Agar Agar 9002-18-0 Price
qrcode