0

Role of Dopamine D1 and D2 Receptors in the Nucleus Accumbens in Mediating Reward

S Ikemoto, B S Glazier, J M Murphy, W J McBride

J Neurosci. 1997 Nov 1;17(21):8580-7.

PMID: 9334429

Abstract:

The objectives of this study were to examine the involvement of D1 and D2 receptors within the nucleus accumbens (ACB) in mediating reinforcement. The intracranial self-administration (ICSA) of D1 and D2 agonists was used to determine whether activating D1 and/or D2 receptors within the ACB of Wistar rats is reinforcing. At concentrations of 0.25, 0.50, and 1.0 mM (25, 50, and 100 pmol/100 nl of infusion), neither the D1 agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol [SKF 38393 (SKF)] hydrochloride nor the D2 agonist (-)-quinpirole (Quin) hydrochloride was self-administered into the shell region of the ACB. On the other hand, equimolar mixtures of SKF and Quin (SKF+Quin), at concentrations of 0.25, 0.50, and 1.0 mM each, were significantly self-infused into the ACB shell. The core region of the ACB did not support the ICSA of SKF+Quin at any of these concentrations. Rats increased lever pressing when the response requirement was increased from a fixed ratio 1 (FR1) to FR3, and they responded significantly more on the infusion lever than they did on the control lever. Coadministration of either 0.50 mM R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine (SCH 23390) hydrochloride, a D1 antagonist, or 0.50 mM S(-)-sulpiride, a D2 antagonist, completely abolished the ICSA of the mixture of SKF+Quin (each at 0.50 mM) into the ACB shell. The present results suggest that concurrent activation of D1- and D2-type receptors in the shell of the ACB had a cooperative effect on DA-mediated reward processes.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP125941879 R(+)-SCH-23390 hydrochloride R(+)-SCH-23390 hydrochloride 125941-87-9 Price
qrcode