0

Sampling and Simultaneous Determination of Volatile Per- And Polyfluoroalkyl Substances in Wastewater Treatment Plant Air and Water

Ian Ken Dimzon, Joke Westerveld, Christoph Gremmel, Tobias Frömel, Thomas P Knepper, Pim de Voogt

Anal Bioanal Chem. 2017 Feb;409(5):1395-1404.

PMID: 27888311

Abstract:

Volatile per- and polyfluoroalkyl substances (PFASs) are often used as precursors in the synthesis of nonvolatile PFASs. The volatile PFASs, which include the perfluoroalkyl iodides (PFAIs), fluorotelomer iodides (FTIs), fluorotelomer alcohols (FTOHs), fluorotelomer olefins (FTOs), fluorotelomer acrylates (FTACs), and fluorotelomer methacrylates (FTMACs), are often produced starting from the telomerization process. These volatile compounds can be present in the air and water environment and can be transformed into highly persistent perfluoroalkyl carboxylic acids. With the exception of FTOHs, which are well studied, the determination of other volatile PFASs is also of prime importance in studying the sources and fate of PFASs. In this study, a method was developed to determine representative precursor compounds that included PFAIs, FTIs, FTOs, FTACs, and FTMACs in wastewater treatment plant (WWTP) air and water samples. The sampling and sample preparation step involved the use of solid-phase extraction (SPE) cartridges with HLB™ material to enrich the analyte. Gas chromatography with mass spectrometry was employed for the detection and quantification of the analytes. Method validation results showed high linearity and sensitivity in the positive electron ionization-selected ion monitoring mode (+EI-SIM). The absolute instrumental limits of detection were in the range of 0.5 to 2 pg. The method detection limit (MDL) in air was 1 ng/m3 with the exception of the FTACs which could be only be detected at concentrations higher than 40 ng/m3. The MDL in water was 10 ng/L. Direct spiking of the cartridges and analyte introduction by volatilization from the glass surface onto the SPE material had recoveries between 86 and 100%. The volatile PFASs were shown to readily partition into the air rather than into water. Consequently, large losses in the amount of PFASs were observed when these were spiked into the water. Graphical abstract Wastewater treatment plant air and water samples were passed through HLB™ solid-phase materials. The eluates were injected onto a GC-MS system to simultaneously determine the volatile PFASs.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
CS35506 Iodide in Water - WP Iodide in Water - WP Price
qrcode