0

Scutellarin Attenuates hypoxia/reoxygenation Injury in Hepatocytes by Inhibiting Apoptosis and Oxidative Stress Through Regulating Keap1/Nrf2/ARE Signaling

Haiyuan Wu, Lan Jia

Biosci Rep. 2019 Nov 29;39(11):BSR20192501.

PMID: 31654068

Abstract:

Scutellarin is a natural flavonoid that has been found to exhibit anti-ischemic effect. However, the effect of scutellarin on hepatic hypoxia/reoxygenation (ischemia-reperfusion (I/R)) injury remains unknown. The aim of the present study was to explore the protective effect of scutellarin on I/R-induced injury in hepatocytes. Our results showed that scutellarin improved cell viability in hepatocytes exposed to hypoxia/reoxygenation (H/R). Scutellarin treatment resulted in decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased superoxide dismutase (SOD) activity in H/R-induced hepatocytes. In addition, scutellarin reduced cell apoptosis in H/R-stimulated hepatocytes, as proved by the decreased apoptotic rate. Moreover, scutellarin significantly up-regulated bcl-2 expression and down-regulated bax expression in hepatocytes exposed to H/R. Furthermore, scutellarin treatment caused significant decrease in Keap1 expression and increase in nuclear Nrf2 expression. Besides, scutellarin induced the mRNA expressions of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). Inhibition of Nrf2 significantly reversed the protective effects of scutellarin on H/R-stimulated hepatocytes. In conclusion, these findings demonstrated that scutellarin protected hepatocytes from H/R-induced oxidative injury through regulating the Keap1/Nrf2/ARE signaling pathway, indicating a potential relevance of scutellarin in attenuating hepatic I/R injury.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP27740018 Scutellarin Scutellarin 27740-01-8 Price
qrcode