0

Separation and Characterization of Allergic Polymerized Impurities in Cephalosporins by 2D-HPSEC×LC-IT-TOF MS

Yu Xu, DanDan Wang, Lan Tang, Jian Wang

J Pharm Biomed Anal. 2017 Oct 25;145:742-750.

PMID: 28806571

Abstract:

Eleven unknown allergic impurities in cefodizime, cefmenoxime and cefonicid were separated and characterized by a trap-free two-dimensional high performance size exclusion chromatography (HPSEC) and reversed phase liquid chromatography (RP-HPLC) coupled to high resolution ion trap/time-of-flight mass spectrometry (2D-HPSEC×LC-IT-TOF MS) with positive and negative modes of electrospray ionization method. Separation and characterization the allergic polymerized impurities in β-lactam antibiotics were on the basis of column-switching technique which effectively combined the advantages of HPSEC and the ability of RP-HPLC to identify the special impurities. In the first dimension HPSEC, the column was Xtimate SEC-120 analytical column (7.8mm×30cm, 5μm), and the gradient elution used pH 7.0 buffer-acetonitrile as mobile phase And the second dimension analytical column was ZORBAX SB-C18 (4.6×150mm, 3.5μm) with ammonium formate solution (10mM) and ammonium formate (8mM) in [acetonitrile-water (4:1, v/v)] solution as mobile phase. Structures of eleven unknown impurities were deduced based on the high resolution MSn data with both positive and negative modes, in which nine impurities were polymerized impurities. The forming mechanism of β-lactam antibiotic polymerization in cephalosporins was also studied. The question on incompatibility between non-volatile salt mobile phase and mass spectrometry was solved completely by multidimensional heart-cutting approaches and online demineralization technique, which was worthy of widespread use and application for the advantages of stability and repeatability.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP540692-A Ammonium formate solution Ammonium formate solution 540-69-2 Price
qrcode