0

Simultaneous Determination of Nine Trace Organophosphorous Pesticide Residues in Fruit Samples Using Molecularly Imprinted Matrix Solid-Phase Dispersion Followed by Gas Chromatography

Xilong Wang, Xuguang Qiao, Yue Ma, Tao Zhao, Zhixiang Xu

J Agric Food Chem. 2013 Apr 24;61(16):3821-7.

PMID: 23544352

Abstract:

How to determine trace multipesticide residues in fruits is an important problem. This paper reports a molecularly imprinted polymer (MIP) that was prepared using 4-(dimethoxyphosphorothioylamino)butanoic acid as the template, acrylamide as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The novel imprinted polymer was characterized by static and kinetic adsorption experiments, and it exhibited good recognition ability and fast adsorption-desorption dynamicd toward trichlorfon, malathion, acephate, methamidophos, omethoate, dimethoate, phosphamidon, monocrotophos, and methyl parathion. Using this imprinted polymer as sorbent, matrix solid-phase dispersion coupled to gas chromatography for simultaneous determination of nine trace organophosphorus pesticide residues was first presented. Under the optimized conditions, the LOD (S/N = 3) of this method for the nine organophosphorus was 0.3-1.6 μg kg(-1); the RSD for three replicate extractions ranged from 1.2 to 4.8%. The apple and pear samples spiked with nine organophosphate pesticides at levels of 20 and 100 μg kg(-1) were determined according to this method with good recoveries ranging from 81 to 105%. Moreover, this developed method was successfully applied to the quantitative detection of the nine organophosphorus pesticide residues in orange samples.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP150375012 Disperse Orange 3 acrylamide Disperse Orange 3 acrylamide 150375-01-2 Price
qrcode