0

Studies of Carbon Monoxide Release From Ruthenium(II) Bipyridine Carbonyl Complexes Upon UV-Light Exposure

Manja Kubeil, Robbin R Vernooij, Clemens Kubeil, Bayden R Wood, Bim Graham, Holger Stephan, Leone Spiccia

Inorg Chem. 2017 May 15;56(10):5941-5952.

PMID: 28467070

Abstract:

The UV-light-induced CO release characteristics of a series of ruthenium(II) carbonyl complexes of the form trans-Cl[RuLCl2(CO)2] (L = 4,4'-dimethyl-2,2'-bipyridine, 4'-methyl-2,2'-bipyridine-4-carboxylic acid, or 2,2'-bipyridine-4,4'-dicarboxylic acid) have been elucidated using a combination of UV-vis absorbance and Fourier transform infrared spectroscopies, multivariate curve resolution alternating least-squares analysis, and density functional theory calculations. In acetonitrile, photolysis appears to proceed via a serial three-step mechanism involving the sequential formation of [RuL(CO)(CH3CN)Cl2], [RuL(CH3CN)2Cl2], and [RuL(CH3CN)3Cl]+. Release of the first CO molecule occurs quickly (k1 ≫ 3 min-1), while release of the second CO molecule proceeds at a much more modest rate (k2 = 0.099-0.17 min-1) and is slowed by the presence of electron-withdrawing carboxyl substituents on the bipyridine ligand. In aqueous media (1% dimethyl sulfoxide in H2O), the two photodecarbonylation steps proceed much more slowly (k1 = 0.46-1.3 min-1 and k2 = 0.026-0.035 min-1, respectively) and the influence of the carboxyl groups is less pronounced. These results have implications for the design of new light-responsive CO-releasing molecules ("photoCORMs") intended for future medical use.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
AP6813383 2,2'-Bipyridine-4,4'-dicarboxylic acid 2,2'-Bipyridine-4,4'-dicarboxylic acid 6813-38-3 Price
qrcode